Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli
نویسندگان
چکیده
Type I modular polyketide synthases are responsible for potent therapeutic compounds that include avermectin (antihelinthic), rapamycin (immunosuppressant), pikromycin (antibiotic), and erythromycin (antibiotic). However, compound access and biosynthetic manipulation are often complicated by properties of native production organisms, prompting an approach (termed heterologous biosynthesis) illustrated in this study through the reconstitution of the erythromycin pathway through Escherichia coli. Using this heterologous system, 16 tailoring pathways were introduced, systematically producing eight chiral pairs of deoxysugar substrates. Successful analog formation for each new pathway emphasizes the remarkable flexibility of downstream enzymes to accommodate molecular variation. Furthermore, analogs resulting from three of the pathways demonstrated bioactivity against an erythromycin-resistant Bacillus subtilis strain. The approach and results support a platform for continued molecular diversification of the tailoring components of this and other complex natural product pathways in a manner that mirrors the modular nature of the upstream megasynthases responsible for aglycone polyketide formation.
منابع مشابه
Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کاملBioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli
Macrolide antibiotics such as erythromycin are clinically important polyketide natural products. We have engineered a recombinant strain of Escherichia coli that produces small but measurable quantities of the bioactive macrolide 6-deoxyerythromycin D. Bioassay-guided evolution of this strain led to the identification of an antibiotic-overproducing mutation in the mycarose biosynthesis and tran...
متن کاملProduction of the potent antibacterial polyketide erythromycin C in Escherichia coli.
An Escherichia coli strain capable of producing the potent antibiotic erythromycin C (Ery C) was developed by expressing 17 new heterologous genes in a 6-deoxyerythronolide B (6dEB) producer strain. The megalomicin gene cluster was used as the source for the construction of two artificial operons that contained the genes encoding the deoxysugar biosynthetic and tailoring enzymes necessary to co...
متن کاملInhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)
Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...
متن کاملThe logic, experimental steps, and potential of heterologous natural product biosynthesis featuring the complex antibiotic erythromycin A produced through E. coli.
The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic tra...
متن کامل